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From the Hamilton-Jacobi formalism, an explicit expression for the speed of wave front propagation along
the backbone of comblike structures is obtained. This expression, through the waiting-time distribution func-
tion, takes into account the number of sites and their distribution in the secondary branches. Our theoretical
results are supported by numerical simulations of the reaction random-walk process on the structure. Finally, a
more complex situation such as the Peano basin structure is also considered, both theoretically and numerically,
exhibiting a good agreement too.
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I. INTRODUCTION

Lattice models and some other discrete models have be-
come very popular in recent years for dealing with a wide
variety of dynamical systemsf1,2g. In this work we want to
show an analytical method for studying the propagation of
reaction random-walk wave fronts through heterogeneous
lattices when these structures are made up by a main back-
bone with a regular distribution of secondary branches. Thus,
our work is especially appropriate and easy to understand for
comblike modelsssee Fig. 1d and so we focus on this kind of
structure, which has become of special interest for many re-
searchers in recent yearsf3g.

For our purpose, we start from the continuous-time ran-
dom walksCTRWd frameworkf4g. Although this approach is
usually applied to continuous systems, we show that the dis-
crete nature of lattice models can be introduced there by
choosing the appropriate distribution functions describing
the jumps made by the walkers. By doing that, our models
will be able to capture the properties of the underlying
random-walk process in the latticesand, in the limit of large
distances, we can interpret it as a diffusion processd.

After that, we introduce in the CTRW a reaction process
taking into account the creationsannihilationd of walkers.
This yields, as usual, traveling wave front solutions spread-
ing through the media. These models are analyzed by means
of the Hamilton-Jacobi techniques, which in recent years
have been proved quite useful for the determination of wave
front speeds on reaction random-walk systemsf5,6g. The re-
sults for the front speeds are compared with random-walk

numerical simulations performed within the comb structures,
showing in general a good agreement. Finally, we justify that
our method can be applied to a large range of lattice models,
provided that we are not interested in the propagation
through the whole structure but just in the direction of the
backbone.

II. RANDOM WALKS

A diffusion process can be expressed in the CTRW frame-
work in terms of the density of particlesrsx,td as

rsx,td =E
0

t

dt8E
R

dx8Csx8,t8drsx − x8,t − t8d, s1d

where Csx,td is the probability for a walker to perform a
jump of lengthx when a timet has elapsed since its previous
jump. Usually, the distribution of jump lengths and the dis-
tribution of time probabilities are independent, so the func-
tion Csx,td can be written in the decoupled formCsx,td
=wstdFsxd and Eq.s1d turns into

rsx,td =E
0

t

dt8wst8dE
R

dx8Fsx8drsx − x8,t − t8d, s2d

wherewstd represents the distribution function for waiting-
time probabilities andFsxd the distribution of jump lengths.

We first consider the case of a discrete one-dimensional
chain where the first neighbors are separated by a distance
Dx. Then, a single random walk, where each walker moves
to one of its first neighbors with equal probability after a
remaining timet, is characterized by the distributions

wstd = dst − td, s3d

Fsxd =
1

2
fdsx − Dxd + dsx − Dxdg, s4d

so the time and the space in the model are taken as dis-
cretized. In this way, discrete systems and lattices can be
analyzed by the CTRW approach.

Next, we add to every site of the backbone a secondary
branch of lengthl, so a comblike structure appearssFig. 1d.

FIG. 1. Representation of a comb structure with distance be-
tween first neighborsDx and secondary branches of lengthl. The
symbolsA,A8 ,A9 , . . . are the names we give to some sites of the
lattice ssee textd.
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In this situation, a walker that is at a site on the backbone can
spend a certain time in the secondary branch before passing
to one of the first neighbors in the backbone. Therefore, if we
are only interested in the behavior of the system in the di-
rection of the backbone, then we can interpret the secondary
branches as introducing a delay time between the sites in the
backbone. In this case, the random walk within the comb
structure is given by Eq.s4d and a new distributionwstd
which has to include the effect of the delay by the secondary
branches.

To determine analytically the effect of the branches we
can apply some convolution rules which were partially dis-
cussed by Van den Broeckf8g for the case of homogeneous
lattices.

sid Let us consider that a walker is initially at a certain site
within the secondary branch. If the walker moves further on
the secondary branchsso it goes away from the backboned
the probability for it to return to the initial site in a timet is
a convolution of factorssthen it becomes a product in the
Laplace spaced.

sii d The total probability for that walker to return to the
initial site is determined by the sum fort from 0 to `.

siii d When the walker reaches a crossingsso it can choose
between different waysd the total probability is the sum of
the probabilities for each possible way.

Note that for the case of comb structures like that in Fig.
1, the secondary branches have no crossings, so rulesiii d is
not necessary there; however, we will show in Sec. IV that in
many other situations it must be taken into account too.

For the sake of generality, let us consider that when the
walker is at a site in the backbone it can jump to another site
in the backbone with probabilitya or go into the secondary
branch with probability 1−a. This generalization allows us
to analyze, for example, structures like those shown in Sec.
IV below as equivalent to that in Fig. 1 just by choosing the
suitable value fora.

Now we can assume that initially a walker is located in
the backbone and apply the rulessid–siii d to determinewstd.
We will examine three specific cases.

(a) Comb structure with l=Dx. In this case there is only
one site within the secondary branch, so the walker can only
jump in the direction of the backbone with probabilitya or
go into the branch with probability 1−a and then come back
to the initial site at the next jump. In consequence, the time it
takes to reach one of the first neighbors in the backbone is
t=t with probability a, t=3t with probability s1−ad31
3a, t=5t with probability s1−ad23123a, and so on.
Hence, we can write intuitively the general formwstd as

wstd = o
j=1

`

as1 − ad j−1d„t − s2j − 1dt…. s5d

The rules shown above forwstd should now reproduce this
behavior. For this purpose, we need to work in the Laplace
space and so we will useŵssd, which is defined as the
Laplace transform ofwstd.

The rulessid–siii d allow us to write the expression

ŵssd = aŵ0o
j=0

`

fs1 − adŵ0
2g j =

aŵ0

1 − s1 − adŵ0
2 , s6d

whereŵ0 is the probability distribution for one single jump
fin our case,ŵ0=exps−tsd, which is the Laplace transform of
Eq. s3dg.

Equation s6d is derived as follows. The terms1−adŵ0
2

within the sum represents, according to rulesid, the probabil-
ity function for each time the walker goes into the secondary
branch. This expression must sum up to infinityfrule sii dg to
take into account that the walker can go into the branch
1,2, . . . ,̀ times. Finally, the factoraŵ0 for the final jump to
the first neighbor in the backbone is added.

The next step is to calculate the antitransform ofs6d in
order to compare it with the predicted result ins5d. Unfortu-
nately, that antitransform is not possible to find analytically.
Instead of that, it is easy to see that the expressions6d may be
written sby Taylor seriesd as

ŵssd = o
j=1

`

as1 − ad j−1sŵ0d2j−1. s7d

Now it is straightforward to see that the Laplace transform of
s5d is s7d and so our method for determiningŵssd is proved
to be valid in this case.

(b) Comb structure with l=2Dx. Analogously to the case
seen above, if now the secondary branch is two sites long we
can write the distribution for the time probabilities as

ŵssd = aŵ0o
j=0

` F s1 − ad
2

ŵ0
2o

k=0

` S1

2
ŵ0

2DkG j

=
aŵ0s2 − ŵ0

2d
2 − s2 − adŵ0

2 .

s8d

In this equation, a new sum for the indexk appears because
now the walker can go twice away from the backbone and
for each one of them we must apply rulesid. We have also
used the fact that within the linear secondary branch the
jumps to the first neighbor have probability 1/2.

We have checked the result in Eq.s8d by random-walk
simulations within a comb structure. According to the results
so obtainedsnot shownd, the antitransform of expressions8d
agrees exactly with the jump probabilities to the first neigh-
bor as a function of time, and so it confirms the validity of
our method.

(c) Comb structure with l→`. We have mentioned that,
as long as the walker moves away from the backbone, a new
convolution factor appears inŵssd. So that, for the casel
→`, we would have theoretically infinite convolution fac-
tors in the expression forŵssd.

Nevertheless, we can greatly simplify this situation. Con-
sider that the walker is at the first site in the secondary
branchspoint A8 in Fig. 1d and moves away from the back-
bone; then, we can callhA8 the probability distribution of
returning for the first time to the pointA8 after a timet. Now
imagine the same situation but for the initial pointA9; it is
easy to see that, asl →`, the conditionhA9→hA8 has to
hold.
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Thus it is possible to use the rulessid–siii d to determine
hA8. By doing this, we obtain the expression

hA8 =
1

2
ŵ0o

j=0

` S1

2
ŵ0hA9D j

, s9d

which is an expression equivalent to the forms6d with a
=1/2 sbecause within the secondary branch every jump to a
first neighbor has probability 1/2d. Now we can introduce
the conditionhA9=hA8, which is strictly correct forl =`.
Solving so Eq.s9d yields

hA8 =
1 −Î1 − ŵ0

2

ŵ0

. s10d

Once we have found this result, the distributionŵssd
comes straightforwardly by applying again the three rules
sid–siii d above. It leads us to

ŵssd = aŵ0o
j=0

`

fs1 − adŵ0hA8g
j =

aŵ0

a + s1 − adÎ1 − ŵ0
2
,

s11d

an expression which has been checked by simulations too,
confirming that Eq.s11d agrees exactly with the results ex-
pected.

At the sight of this agreement found in the casessad–scd,
we can affirm that our method is able to describe exactly the
random-walk process in these structures along the backbone.

III. REACTION-RANDOM WALKS

Our main objective, as said above, is to use the probabil-
ity distributions we have found to determine the properties of
reaction random-walk processes and the wave front solutions
they yield. In order to extend the CTRW approach shown
above to the case of reaction random-walk systems we will
add to Eq.s2d a term that accounts for the reaction process.
So we obtain the mesoscopic equation

rsx,td =E
0

t

dt8wst8dE
R

dx8Fsx8drsx − x8,t − t8d

+E
0

t

dt8fst8dfsx,t − t8d, s12d

where the functionfstd is defined as the probability to re-
main still at least a timet before performing a new jump,

fstd =E
t

`

dt8wst8d. s13d

In consequence, the reaction functionf, which determines
the characteristics of the reaction process, is applied for all
the particles that are at positionx and arrived there a timet8
ago. For a more rigorous description, the reader can find in
f6g how Eq. s12d can be derived straight from the master
equations in the CTRW framework.

To analyze the reaction random-walk equation we first
need to give a specific form tof. A reasonable choice which

is not too difficult to deal with and has been used before
successfully in many different fields, such as population dy-
namics, tumor growthf9g, and so on, is the Fisher-
Kolmogorov-Petrovskii-Piskunov equation

fsrd = ars1 − rd, s14d

wherea is a constant growth rate.
The systems12d–s14d is expected to yield in general wave

front solutions which connect the unstablesr=0d and the
stablesr=1d state in Eq.s14d. Thus, the speed of the wave
front becomes the essential parameter to find in order to de-
termine the behavior of the system.

Recently, we have shownf6,10g that the wave front speed
for the cases12d–s14d can be obtained analytically by
Hamilton-Jacobi techniquesf5g; as a result, we can write the
expression for that speed as

v = min
H
S H

psHd
D or v = min

p
SHspd

spd
D , s15d

whereHspd or psHd is the solution of the Hamilton-Jacobi
equation

1

ŵsHd
= F̂spd +

a

H
S 1

ŵsHd
− 1D . s16d

The distributionsŵsHd andF̂spd are defined as

ŵsHd =E
0

`

e−Htwstddt, F̂spd =E
−`

`

epxFsxddx, s17d

so they are the Laplace transform and the bilateral transform
of the waiting time and the jump length distributions, respec-
tively.

The importance of the results15d–s17d lies especially in
its generality. We can introduce any pair of distributions
wstd ,Fsxd determining a diffusion pattern and obtain as a
result the speed for the corresponding reaction-diffusion
fronts.

Now, we want to apply the Hamilton-Jacobi result for
random walks in the comb structures studied in Sec. II. Ac-
cording to our initial hypothesis we only consider the
random-walk process through the backbone and interpret the
secondary branches as included into the definition ofwstd.
Thus we can take the jump length distributions4d and the
time distributions obtained in Sec. IIfnote that, as we
worked there in the Laplace space, we already know the
form of ŵsHdg.

Introducing Eq.s4d into Eq. s16d and solving forp we
obtain from the first equation ins15d the front speed for the
three cases in Sec. II,

v = min
H.a

HDx

cosh−1hf1/ŵsHdgs1 − a/Hd + a/Hj
, s18d

with ŵsHd=ŵss=Hd given by Eqs.s6d, s8d, ands11d. In Eq.
s18d, the minimum that gives us the value forv cannot be
computed analytically; instead of that, we must find it by
numerical methods. This operation has been performed in
Fig. 2, where we compare the results found with the speed
obtained from simulations within comb structures where we
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have implemented a reaction random-walk process. The de-
tails for the simulations are given inf7g; basically, we simu-
late a random-walk process within the structure and then the
reaction functions14d is applied to every site of the structure
at every time step of the simulation in order to implement the
reaction process.

From Fig. 2, we can conclude that the agreement between
Eq. s18d and simulations is excellent for low values ofa.
Nevertheless, asa grows there appear some little discrepan-
cies between the two resultssfor high values ofa the simu-
lations become more difficult and it prevents us from extend-
ing the results in this regimed.

These differences may be explained as follows. For the
random-walk process, we have proved in Sec. II that our
method agrees exactly with simulations. On the contrary, the
reaction process is implemented differently in both cases: in
the simulations we apply the reaction function to every site

in the lattice, but our theoretical method considers that all the
walkers are concentrated in the backbone. So, when we ap-
ply fsrd, the dependence inr introduce differences between
the two situations. However, we see in Fig. 2 that only if the
reaction process is importantsfor high values ofad do the
differences between the two situations become apparent.
This deviation increases withl and it is maximum forl
→` because for this case there are more sites in the structure
that do not belong to the backbone. See Fig. 3

Finally, we note that in the regime for high values ofa the
wave front speed tends asymptotically to the speed of the
individual particlesDx/t swhich is equivalent tovt /Dx→1
in Fig. 2d, a behavior that we discussed inf6g and that now
we have proved analyticallyssee the Appendixd.

IV. OTHER CASES

Here, we have focused on the study of wave front solu-
tions across comblike structures because they are specially
suitable to illustrate our method. However, we want to point
out that we are allowed to deal with a wide variety of het-
erogeneous lattices. The one important restriction is that we
must be only interested in the dynamic behavior across a
backbone and then consider the rest of the structure as sec-
ondary.

One of the most interesting cases we could analyzeses-
pecially for practical purposesd would be fractal structures.
In Fig. 3 we show the construction for the well-known Peano
basinsas a function of the construction levelQd, which has
been used before for the modelization of fractal river basins
f11,12g. For instance, if we are only interested in the behav-
ior in the direction of the backbone, then the caseQ=2 for
the Peano basin leads us to the waiting-time distribution
function

ŵssd =
1

2
ŵ0o

j=0

` F1

2

ŵ0
2

4 o
k=0

` S ŵ0
2

2
+

ŵ0
2

4
DkG j

=
4ŵ0 − 3ŵ0

2

8 − 7ŵ0
2 ,

s19d

where we have useda=1/2 sthe same jump probability in all
directionsd. The wave front speed derived from Eq.s19d can
be obtained again by means of Eq.s18d. In the plot in Fig. 4,
we show these speeds for the caseQ=2 and also for the case
Q=5 fŵssd is not shown here for simplicityg, the highest
level we have analyzed by our method. We compare them
with reaction random-walk simulations within a Peano basin
with Q=10 sfor simulations, we need a high value ofQ to
allow the formation of fronts; although the value ofQ is
different in the theory and the simulations, we observe that

FIG. 2. Comparison of the wave front speedssnormalized by
vt /Dxd found from the Hamilton-Jacobi methodslinesd and from
the simulations within the comb structuresscirclesd as a function of
the reaction parametera for the three cases studied here. All the
parameters in the plot are dimensionless.

FIG. 3. Construction process of the Peano fractal basin for the
three first construction levels.
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the results forv converge very fast and so taking the greatest
values forQ in the theory would not improve our results
substantiallyd. In consequence, we find for the Peano basin
the same behavior as that observed for comb structuressthat
is, a good agreement between theory and simulations for low
values ofa and some discrepancies asa growsd.

We also mention that percolation clusters, one of the best-
known fractal structures, are another case for which it has
been proposed that comblike models can be a good approach
to study their propertiesf13g, though in this case there exists
some controversy about it.

V. CONCLUSIONS

From the CTRW framework we have used a mesoscopic
equation to describe the front propagation in comblike struc-
tures in the backbone direction. We have exposed how to
derive the waiting-time distribution function in the Laplace
space, which has to take into account the number of sites in
the secondary branches. These are assumed to emerge from
the backbone’s sites separated by a distanceDx. The Peano
basin and three particular cases of comblike structures have
been studied. We have employed the Hamilton-Jacobi for-
malism to obtain an explicit expression for the speed of front
propagation in these structures. Our theoretical results have
been compared to numerical simulations exhibiting a good
agreement. The structures we have analyzed are just some
examples to show the wide range of application for our
method. We think there are still many more different struc-
tures and lattices with practical interest and whose dynamic
properties can be successfully analyzed by the approach we
have presented here.
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APPENDIX: WAVE FRONT SPEED IN THE REGIME
a\`

In Ref. f6g, we argued that there is a physical restriction to
the speed of reaction-random-walk fronts. This restriction
was called thefinite jump speedeffect and it says that the
speed of the front cannot be higher than the speed of the
individual particles in the process. The speed of the front
tends to increase as the reaction term gets higher, so in our
case, where the reaction term is controlled by the value ofa,
we expect that in the regimea→` the speed of the fronts
will tend asymptotically to the speed of individual particles.
Next, we shall prove it analytically.

We observe from the expressions18d for the speed of
fronts thata→` implies H→` too sfrom the conditionH
.ad. So, first of all we must look for the expression ofwstd
in this limit of high H.

For this purpose, we can observe thata→` means that
the reaction process is almost immediatesthe characteristic
time for the process isa−1→0d, so in this regime the reaction
process is dominated by the first particles jumping, that is,
those particles that jump after a waiting timet=t. According
to our arguments in Sec. II, this means that we can write

H → ` ⇒ ŵsHd → ae−tH, sA1d

whereae−tH represents the distribution function correspond-
ing to the probabilitya of jumping to the first neighbor of
the backbone after a timet. It can be checked that Eq.sA1d
holds in all the cases reported in this article—Eqs.s6d, s8d,
s11d, ands19d.

From Eq.sA1d and the conditiona,H we can also write

1

ŵsHd
S1 −

a

H
D +

a

H
——→
a,H→` 1

ŵsHd
=

e−tH

a
. sA2d

Finally, we use the equivalence

cosh−1sjd = lnsj + Îj2 − 1d sA3d

and so, using Eqs.sA2d and sA3d, we can write the speedv
from Eq. s18d as

v ——→
a,H→`

min
H

HDx

lns2etH/ad
= min

H

HDx

lns2/ad + tH
. sA4d

Now it is easy to see thatH→` leads us tov→Dx/t, so the
front speed tends in this limit to the value of the individual
jump speed.

FIG. 4. Wave front speedssnormalized byvt /Dxd for the Peano
basin, analogously to Fig. 2. Circles represent values from simula-
tions withQ=10 and lines are obtained from Eqs.s18d ands19d for
the casesQ=2 and 5. All the parameters in the plot are
dimensionless.
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